On Designs of Maximal (+1,-1)-Matrices of Order $n=2 \pmod{4}$. II*

By C. H. Yang

Abstract. Finding maximal (+1, -1)-matrices M_{2m} of order 2m (with odd m) constructible in the standard form

$$\begin{pmatrix} A & B \\ -B^T & A^T \end{pmatrix}$$

is reduced to the finding of two polynomials C(w), D(w) (corresponding to the circulant submatrices A, B) satisfying

(*)
$$|C(w)|^2 + |D(w)|^2 = \frac{1}{2}(m-1)$$
,

where w is any primitive mth root of unity. Thus, all M_{2m} constructible by the standard form (see [4]) can be classified by the formula (*). Some new matrices M_{2m} for m = 25, 27, 31, were found by this method.

Let M_{2m} be a maximal (+1, -1)-matrix of order 2m and let $S = ((s_i))$ be the circulant matrix of order m with the first row entries s_i $(0 \le i \le m - 1)$, all zero but $s_1 = 1$.

When m is odd, it is known that (for $m \leq 27$, except m = 11, 17; see [1]-[4]), M_{2m} can be constructed by the following matrix:**

(1)
$$R = \begin{pmatrix} A & B \\ -B^T & A^T \end{pmatrix}, \quad \text{where } A = \sum_{k=0}^{m-1} a_k S^k, B = \sum_{k=0}^{m-1} b_k S^k \text{ with } A^k = \sum_{k=0}^{m-1} b_k S^k$$

 a_k and b_k , 1 or -1, and T indicates the transposed matrix. Then the gramian matrix of R becomes

$$RR^{T} = \begin{pmatrix} P & 0 \\ 0 & P \end{pmatrix},$$

where P is equal to

(2)
$$AA^{T} + BB^{T} = 2\left(mI + \sum_{k=1}^{m-1} S^{k}\right),$$

where I is the identity matrix of order m.

By applying to the both sides of (2) the transformation L which transforms S into a diagonal matrix $W = [w_1, \dots, w_m]$ with w_j , all distinct *m*th roots of unity, (namely, $L(S) = U^*SU = W$, where U is unitary and * indicates the conjugate transpose; see [5]) we obtain

Received July 10, 1967, revised August 5, 1968.

^{*} This research was supported by Faculty Research Fellowship of The Research Foundation of The State University of New York.

^{**} For n = 25, without circulancy of submatrices A and B, see [2]; also see Addition of this paper.

C. H. YANG

(3)
$$A(w)A(w^{m-1}) + B(w)B(w^{m-1}) = 2\left(m + \sum_{k=1}^{m-1} w^k\right)$$

where

$$A(w) = \sum_{k=0}^{m-1} a_k w^k, B(w) = \sum_{k=0}^{m-1} b_k w^k$$

and w is any mth root of unity.

Since w and w^{m-1} are conjugate to each other, (3) is also equivalent to

(4)
$$|A(w)|^2 + |B(w)|^2 = 2\left(m + \sum_{k=1}^{m-1} w^k\right).$$

Let p and q be respectively the numbers of -1's in each row of A and B. By replacing 1 by 0 and -1 by 1 in A and B and performing the similar process as above, we obtain the following formula corresponding to (4).

(5)
$$|C(w)|^2 + |D(w)|^2 = p + q + r \sum_{k=1}^{m-1} w^k,$$

m	C(w)	D(w)	N_A	N_B	N
3	0	1	1	1	1
5	1	1	1	1	1
7	1	$1 + w + w^3$.	1	1	1
9	1+w	$1 + w^2 + w^5$	3	3	3
13	$1 + w + w^3 + w^9$	$1 + w_0 + w_0^3 + w_0^9$	2	2	4
	$1 + w + w^4$	$egin{array}{llllllllllllllllllllllllllllllllllll$	2	4	4
15	$1 + w + w^4 + w^6$	$egin{array}{llllllllllllllllllllllllllllllllllll$	4	8	8
	$1 + w + w^4 + w^{10}$	$1 + w + w^3 + w^5 + w^7 + w^8$	2	2	2
19	$1 + w + w^3 + w^5 + w^8 + w^9$	$1 + w + w^3 + w^7 + w^9 + w^{10} + w^{14}$	9	9	9
	$\begin{array}{c} 1+w+w^2+w^4+w^7+w^{12}\\ \text{or}\\ 1+w+w^3+w^{12}+w^{14}+w^{15} \end{array}$	$\begin{array}{c}1+w+w^3+w^4+w^8+w^{10}+w^{14}\\ \text{or}\\1+w+w^3+w^5+w^9+w^{10}+w^{16}\end{array}$	6	6	12
	$\frac{1}{1+w+w^2+w^3+w^6+w^{12}}$	$1 + w + w^5 + w^7 + w^9 + w^{12} + w^{15}$	9	. 9	9
	$1 + w + w^2 + w^3 + w^7 + w^{12}$	$\begin{array}{c} 1+w+w^3+w^6+w^8+w^{12}+w^{16}\\ \text{or}\\ 1+w+w^3+w^7+w^{11}+w^{14}+w^{16} \end{array}$	9	18	18

TABLE I

	$N = N_A = N_B$	6 9 9			1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
TABLE II	D(w)	$w^{3} + w^{6} + w^{8} + w^{10} + w^{11} + w^{14} + w^{17}$ $w^{3} + w^{6} + w^{8} + w^{10} + w^{11} + w^{14} + w^{18}$ $w^{3} + w^{9} + w^{11} + w^{13} + w^{16} + w^{19} + w^{23} + w^{24}$	TABLE III	B corresponding to $D(w^k)$	$\begin{array}{c} + & 1 + + + + + + + + + + + + + + + + +$
		$\frac{1+w+w^{2}+w}{1+w+w^{2}+w^{$			++++++++++++++++++++++++++++++++++++++
	C(w)	$\begin{array}{c} 1+w+w^5+w^7+w^9+w^{10}\\ 1+w+w^2+w^5+w^7+w^{11}+w^{14}\\ 1+w+w^2+w^6+w^9+w^{18}+w^{21}+w^{22} \end{array}$		A corresponding to $C(w^k)$	
	m	21 23 27		k	1 1 1 0 2 4 2 1 1 1 0 0 4 7 0 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

203

where $C(w) = \sum_{k=0}^{m-1} c_k w^k$ with $c_k = 0$ whenever $a_k = 1$ and $c_k = 1$ whenever $a_k = -1$; D(w) is similarly defined. The following relation is satisfied by r, when w = 1 is put into (5).

(6)
$$p^2 + q^2 = p + q + r(m-1)$$
.

Similarly from (4), we have

(7)
$$(m-2p)^2 + (m-2q)^2 = 4m-2$$

When $w \neq 1$, from (5), (6), and (7), we obtain

(*)
$$|C(w)|^2 + |D(w)|^2 = \frac{1}{2}(m-1)$$
.

All maximal (+1, -1)-matrices M_{2m} for odd m constructible by (1) with the restriction $p \leq q < \frac{1}{2}m$, for $m \leq 19$ were listed in [4].

Thus construction of maximal matrices is reduced to finding of polynomials C(w), D(w) satisfying (*). Table I is obtained according to this classification for $n = 2m \leq 38$. In this table, N, N_A , N_B are respectively numbers of distinct types of matrices M_n , A, B; w and w_0 are any primitive *m*th roots of unity.

For example, when n = 18, m = 9; primitive 9th roots of unity are $w = \exp$ $(2\pi i/9), w^2, w^4, w^k$ for k = 5, 7, 8. Since w^k and w^{m-k} are symmetric with respect to $w^m = 1$ which corresponds to the main diagonal, $C(w^k)$ and $C(w^{m-k})$ produce designs of the same type. Consequently we can omit the cases for w^k with $k \ge 5$. C(w) = 1 + 1and -+-++ respectively. Similarly, $C(w^2) = 1 + w^2$ and $D(w^2) = 1 + w^2$ $w^4 + w$ produce the designs -+-++++++ and --++-++++ respectively. Likewise, $C(w^4) = 1 + w^4$ and $D(w^4) = 1 + w^8 + w^2$ produce -+++-++++ and -+-+++++-. When m = 19, it is sufficient to consider primitive roots $w = \exp((2\pi i/19))$, w^k for $2 \le k \le 9$. For the case $C(w) = 1 + w + w^2 + w^2$ $w^4 + w^7 + w^{12}$; we have $C(w^2) = 1 + w^2 + w^4 + w^8 + w^{14} + w^5$, $C(w^3) = 1 + w^3$ $+ w^{6} + w^{12} + w^{2} + w^{17} = w^{-2}C(w^{2})$, and $C(w^{5}) = 1 + w^{5} + w^{10} + w + w^{16} + w^{3}$ $= w^5 C(w^{-2})$, which produce the corresponding designs -+-+-++++- +++++, -+--+ +-+++ ++-++, and --+-+ -++++ +++++ respectively. All of these three de--1, -1, 3. Similarly it can be shown easily that $C(w^k)$ for k = 4, 6, 9 produces designs with the finite sequences 3, -1, -1, 3, -1, 3, 3, 3, 3, 3; for k = 1, 7, 8, it produces those with 3, 3, 3, -1, 3, -1, 3, 3, -1. In general, it can be shown that designs produced by C(w), $w^k C(w)$, and $w^k C(w^{-1})$, are of the same type for any integers k and h.

Table II is obtained by applying this method of finding polynomials C(w) and D(w) to the previously known designs for m = 21, 23, and 27.

For example, when m = 27, with primitive roots $w^k = \exp((2\pi ki/27))$, (Table III) designs of distinct types are obtained.

Addition. The following new designs for M_{50} , M_{54} , and M_{62} with the corresponding C(w) and D(w) have been found.

When m = 25, we have

 $\begin{array}{l} C(w) \,=\, 1 \,+\, w \,+\, w^2 \,+\, w^6 \,+\, w^8 \,+\, w^{10} \,+\, w^{11} \,+\, w^{14} \,+\, w^{15} \,, \\ D(w) \,=\, C(w^7) \,=\, 1 \,+\, w^2 \,+\, w^5 \,+\, w^6 \,+\, w^7 \,+\, w^{14} \,+\, w^{17} \,+\, w^{20} \,+\, w^{23} \,. \end{array}$

When m = 27, we have

 $C(w) = 1 + w + w^{2} + w^{3} + w^{6} + w^{10} + w^{12} + w^{15} + w^{23}$ $D(w) = 1 + w + w^2 + w^5 + w^7 + w^9 + w^{10} + w^{17} + w^{20} + w^{21} + w^{23}$

When m = 31, we have

$$\begin{array}{l} C(w) \,=\, 1 \,+\, w \,+\, w^2 \,+\, w^3 \,+\, w^4 \,+\, w^8 \,+\, w^{13} \,+\, w^{19} \,+\, w^{23} \,+\, w^{26} \,, \\ D(w) \,=\, 1 \,+\, w \,+\, w^2 \,+\, w^3 \,+\, w^6 \,+\, w^7 \,+\, w^{10} \,+\, w^{12} \,+\, w^{14} \,+\, w^{15} \,+\, w^{17} \,+\, w^{18} \,+\, w^{24} \,+\, w^{26} \,+\, w^{28} \,. \end{array}$$

Mathematics Department State University College Oneonta, New York 13820

1. H. Ehlich, "Determinantenabschätzungen für binäre Matrizen," Math. Z., v. 83, 1964, pp. 123–132.

pp. 123-132. 2. C. H. YANG, "Some designs for maximal (+1, -1)-determinant of order $n \equiv 2 \pmod{4}$," Math. Comp., v. 20, 1966, pp. 147-148. MR **32** #5534. 3. C. H. YANG, "A construction for maximal (+1, -1)-matrix of order 54," Bull. Amer. Math. Soc., v. 72, 1966, p. 293. MR **32** #5678. 4. C. H. YANG, "On designs of maximal (+1, -1)-matrices of order $n \equiv 2 \pmod{4}$," Math. Comp., v. 22, 1968, pp. 174-180. 5. J. WILLIAMSON, "Hadamard's determinant theorem and the sum of four squares," Duke Math. J., v. 11, 1944, pp. 65-81. MR **5**, 169.